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Abstract— Place categorization and object recognition are
competencies needed by robots to perform a variety of service
tasks in the home, such as fetch-and-carry, retrieval, cleaning,
meal preparation, and companionship. Context is a powerful
cue for place categorization and object recognition; rooms are
laid out in a specific fashion to enable comfortable and efficient
living, and objects are used within rooms for tasks specific to
that room. This paper will present a technique which leverages
contextual cues for joint reasoning about object and room
classification via a conditional random field model.

I. INTRODUCTION
Domestic service robots will one day work in the home

to perform useful tasks such as object retrieval, cleaning
and organization, and security. The tireless support of these
systems will enable the elderly to live independently by
providing service, safety, and companionship. Despite signif-
icant automation already being present in the home such as
dishwashers, washing machines, and robot vacuums, people
face a steadily increasing amount of duties necessary to
support their current lifestyles. In our society, people are
looking to spend less time on domestic drudgery, robotic
assistance in the household will be a welcomed development.

One of the most important competencies needed for
domestic service robots is the ability to understand their
surroundings well enough to perform their duties. Robots
will be required to interact with objects in people’s homes
to perform tasks such as cleaning and meal preparation; an
understanding of where these objects are located or belong
is required to perform these tasks. People prefer to interact
with robots in human terms, such as ”Get the cup from
the kitchen”, instead of robot terms, such as ”Get object
1372 from (4.2, 12.8, 1.2)”. Room category representations
in addition to room and object co-occurrence is needed to
enable this interaction modality.

One of the most important tasks that a new domestic
service robot must be capable of is the first one that it will
perform when it is unpacked from its shipping crate: mapping
its new home and familiarizing itself with the objects with
which it will need to interact. The position of an object
within the environment can be used as a cue for that object’s
identity. For example, the microwave oven is more likely to
be found in the kitchen, and the toilet is more likely to be
found in the bathroom. The knowledge of the label of the
room currently inhabited by the robot can be used to narrow
the potential classifications of the objects in the room. The
recognition of some objects can also be used as a cue for the
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identity of other objects around them, such as the mouse is
usually to be found to the right of the keyboard, or the light
switch should be found on one side of the doorway.

The task of identifying objects in an unknown (and
dynamic) environment should incorporate spatial location
and object permanence. In this way, object recognition and
SLAM are linked; the performance of each is improved by
the other. Object recognition can provide a strong cue for
data association, and spatial position can provide a strong cue
for object identification. Prior identification of an object from
a certain vantage point, combined with object permanence,
the expectation that things remain where they were last seen
for short periods of time, can be used to simplify the future
recognition task; it limits the search space and permits less
certain matches to be incorporated if they agree with previous
measurements of the object.

This paper will present a technique for combining reason-
ing about object and room classification within a mapping
framework. Object classification will consist of two com-
ponents: first, a direct recognition based on SURF feature
matching, and second, a bag-of-words technique for classifi-
cation of objects which are not recognized by the first com-
ponent. Room location and extent are measured and placed
in a hybrid metric/topological map. Object recognition and
classification measurements are provided along with room
adjacency and object-in-room relationships to a conditional
random field(CRF) model. The CRF model uses loopy belief
propagation to estimate the marginals on each object and
room node.

Related work will be presented in Section II. The specific
algorithms and techniques developed for this paper will be
presented in Section III. The experimental procedure will
be outlined in Section IV and results will be discussed in
Section V. Conclusions will be presented in Section VI and
an outline of our future research direction will be presented
in Section VII.

II. RELATED WORK

A visual place recognition technique is presented in [26].
This technique extracts SIFT features [9] and performs
room recognition with a support vector machine (SVM).
This technique is demonstrated to generalize across several
experimental settings, and even to images taken by robots
with catadioptric as well as perspective cameras. Another
technique which uses SIFT features for visual localization is
presented in [2] and a probabilistic model for appearance-
based localization or place recognition is presented in [7].
Our approach is different in that we first segment rooms and
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then recognize objects within that room for classification in
a CRF model.

A hybrid metric/topological cognitive model called the
Spatial Semantic Hierarchy (SSH) is presented by Kuipers in
[8]. This model incorporates representations for robot reac-
tive behaviors and control at its lowest levels. At the higher
levels of the hierarchy, the SSH makes use of a topological
map representation as well as a metric map representation.
Another technique by Zender et.al. applies the conceptual
spaces representation of Gärdenfors [6] to mobile robots by
representing topological relationships, metric maps, objects,
and people in [27]. We will also be building a topological
map representation to determine room adjacency and which
objects appear within each room for use in the CRF model.
We also build a metric map of the geometric coordinates
of these objects which the robot uses in a simultaneous
localization and mapping (SLAM) framework to keep track
of its location, as well as to generate the topological map.

A technique for classifying places or rooms based upon
range data from a laser scanner is presented in [10]. This
technique demonstrates good performance in categorizing
among three classes of room, corridor, and doorway; how-
ever, it is unclear how well this technique would perform
at the task of classifying specific types of rooms. The
authors extended this work by using this representation for
exploration using semantic information in [24].

Simultaneous Localization and Mapping(SLAM) has been
an active research topic since the mid 1980s. The problem
is the synthesis of two simpler problems: localization in
a known map, and map building with known location.
Currently, many researchers believe that SLAM is a solved
problem; however, few plug-in systems exist and there are
few commercial applications in the marketplace today. Many
details about the early approaches to the SLAM problem can
be found in [3] and modern approaches in [1].

Context can be a useful cue in recognition. Global features
such as bag-of-words based texture recognition can help
with scene recognition and improve object recognition [13].
In [22], a technique is developed for jointly segmenting and
classifying the objects on a per-pixel basis in images. This
technique also uses a conditional random field (CRF) model
with shape textons, color distributions, image locations, and
edges to segment and classify objects in the image. Semantic
information about object co-occurrence was added to this
CRF model in [15].

III. ALGORITHM

Our group uses the Robot Operating System (ROS) de-
veloped at Willow Garage [14] for low level behavior and
interprocess communication. Our mobile robot, Jeeves, is
a Segway RMP200 base which has been modified to be
statically stable with support wheels, which can be seen in
figure 2. The robot uses an Asus Xtion Pro 3D camera for
object segmentation. The robot has several laser scanners
which are used for obstacle avoidance, localization, mapping,
and measuring the size of rooms; however, in this application
the robot is tele-operated and uses the Hokuyo UTM30
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Fig. 1. A diagram of the components used in this paper.

Fig. 2. Our mobile robot ”Jeeves”, inspecting a cup on a table in our test
environment.

laser scanner to measure rooms. The robot uses a Directed
Perception PTU-46-70 pan-tilt unit to aim sensors on its
upper extremity. Currently, the only sensor on the pan-tilt
unit is a Nikon D90 DSLR camera with an 18mm lens. This
high resolution camera is used to gather detailed images of
target objects for classification and recognition.

An overview diagram of our system can be seen in
figure 1. Laser range measurements are provided by the
Hokuyo UTM30 laser scanner to the Gaussian place seg-
mentation module (section III-E), which provides estimates
of room shape and size to the mapping module(section III-
F). Point cloud data is gathered by the Asus Xtion Pro
depth camera and then is filtered and segmented to extract
candidate object point clouds. Candidate object point clouds
are then projected into high resolution images from the
Nikon D90 camera to extract candidate image regions. Object
recognition(section III-C) and classification(section III-D) is
performed on these candidate image regions and the results
are provided to the mapper. The mapper (section III-F)

1767



builds a metric map of the location of places and objects,
and also builds a topological map which it sends to the
conditional random field module (section III-A) along with
object classification distributions and recognition results. The
conditional random field module computes the posterior
distribution over place and object labels, as well as the
maximum likelihood configuration of the world. Detailed
descriptions of these modules is provided below.

A. Conditional random field model

Domestic environments are organized with specific objects
located in particular rooms such as toothpaste in the bath-
room and calculators in the office. Rooms are also arranged
in specific patterns to enable efficient and comfortable living,
such as bathrooms are next to bedrooms, and dining rooms
are adjacent to kitchens.

We use a conditional random field (CRF) model of room
adjacency and object-room compatibility to reason about
these design patterns to determine room label. CRF models
express the probability of configurations of variables through
a set of compatibility functions. In the case of modeling room
adjacency and room-object co-occurrence, there is one type
of compatibility function which favors likely pairs of rooms
and combinations of rooms and objects.

p(y|x) =
1

Z(x)
exp

K

∑
k=1

λk fk(y,x) (1)

In the application of equation 1 used in this paper, feature
functions represent room adjacency and object in room
properties. More appropriate combinations of these values
are given larger values by the feature functions. In the current
implementation, we have assigned values for the feature
functions which correspond to combinations that made sense
to us; however, it is not important what these values are.
Training feature functions from data will be the subject of
future research.

The CRF model is chosen for this task instead of the
more typical Markov Random Field (MRF) model because
it allows us to incorporate certain pieces of evidence as
absolute, and solve for the distribution of uncertain variables
conditioned on this absolute evidence. The evidence which
we consider absolute are objects which have been identified
by SURF feature matching. The evidence which we consider
uncertain are objects classified by a bag-of-words classifier.
The true potential of the choice of CRFs over MRFs will
be the subject of future work when feature functions are
trained from data. Learning with CRFs can be performed
discriminatively, to maximize the likelihood of the labels
given the certain evidence. In contrast, learning with MRFs
is generative and maximizes the joint likelihood of the labels
and evidence.

We use the UGM implementation of CRFs
from [21]. Room connectivity topology and object
recognition/categorization measurements are sent to the
CRF. Posterior marginal room label distributions and object
category distributions are returned back to the mapping
program.

Fig. 3. Point cloud data is projected into the camera image. Horizontal
planes are extracted (yellow points) and objects are clustered points which
appear above the plane (green points). The region of interest is selected
based upon the projection of object points into the image (blue rectangle)

B. Object Segmentation

Objects are segmented from the background with 3D point
clouds. We leverage the Asus Xtion Pro depth camera (which
has a Primesense sensor similar to the Microsoft Kinect)
to observe the 3D structure of the scene immediately in
front of the robot. The camera software provides a 3D
point cloud which we operate on with the Point Cloud
Library (PCL)[20]. First, the point cloud is spatially filtered
to contain only relevant portions which fall within a volume
of interest in front of the robot. The point cloud is then
downsampled to one point per cubic centimeter using a voxel
filter. We then extract up to 4 planes from the remaining
point cloud using a RANSAC [5] technique available from
the PCL library. These planes are then analyzed to find
remaining points which lie above them. These remaining
points are clustered to find candidate objects. The points
from each candidate object of appropriate size are projected
into a high resolution camera image which was taken at
the same time. The extent of these points in the camera
image is used to segment the candidate object from the
background. This segmented image region is then passed on
to the subsequent components to perform object recognition
or classification. An example selected region of interest,
object points, and table surface points can be seen projected
into a high resolution image in figure 3.

C. Object recognition

After an candidate object image is segmented using the
technique described in section III-B, we attempt to recognize
it using a SURF feature matching technique. First, the SURF
features in the candidate object image are extracted. These
SURF features are compared to the SURF features previously
extracted in a model database. The set of matched features
to a model element are used to compute a homography to
the model image using RANSAC [5]. This homography is
then used to filter out erroneous feature matches and select an
inlier set. If this set is of sufficient size, then the object is said
to be recognized absolutely and this information is then sent
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Fig. 4. A successfully recognized object from the class ”Toys”. The model
image appears on the right, the candidate object image appears on the left.
Blue lines indicate matches which are inliers to the homography filter. There
are enough inlier matches, so the recognition algorithm accepts this as a
match.

Fig. 5. An object which does not match with class ”Sundries”. The model
image appears on the right, and the candidate object image appears on the
left. Blue lines indicate matches which are inliers to the homography filter.
There are too few inlier matches, so the recognition algorithm rejects this
as a match.

to the mapping system along with geometric measurements
of the object’s location. If there are not enough inlier feature
matches, then the object is not recognized and must be
classified by the next module described in section III-D. The
use of a homography is only fully correct when the candidate
object is planar; further developments include 3D feature
coordinates and matches consistent with camera projections.
An example of a correctly identified object can be seen in
figure 4. An example where this technique identifies a non-
matching object can be seen in figure 5.

D. Object classification

If a candidate object cannot be recognized by any of
the models using the object recognition technique described
in section III-C, then we employ a probabilistic object
classification technique to give a distribution over classes.
The technique for object classification is based upon the bag
of visual words approach of [23]. This technique requires a

Fig. 6. Visual words extracted from a candidate object image. Circle
color indicates which visual word a given feature is assigned to by vector
quantization. The size of each circle indicates the scale parameter for the
underlying SURF feature.

Fig. 7. The histogram of visual words appearing in figure 6

vocabulary of visual words which was learned by performing
K-means clustering on SURF descriptors extracted from the
Caltech 101 [4] training set. SURF features are extracted
from an image of a candidate object and are vector-quantized
to the nearest visual word in the vocabulary. The visual
words extracted from a candidate object image can be seen
in figure 6. A histogram is built by counting the frequency
of the appearance of each visual word in this image of the
candidate object weighted by the term frequency inverse
document frequency (TF-IDF) [16], see figure 7 for the
histogram generated from the visual words seen in figure 6.
A set of Relevance Vector Machines (RVMs) are trained to
recognize object categories using this visual word histogram.
Each of the RVMs is trained to recognize one category. The
output of an RVM is a probability, unlike the output of a
Support Vector Machine (SVM).

To perform object categorization on a segmented candidate
object image, SURF features are first extracted and then
vector quantized into their nearest visual word. The visual
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Fig. 8. Confusion matrix from a 5 class experiment on the Caltech 101
dataset

words present in this image are collected in a histogram
and normalized. The set of RVMs representing the object
categories each analyze the histogram of visual words and
give a probability that the given candidate object is a member
of that class. These probabilities are combined under the
assumption that each RVM is independent by accumulating
them into a multinomial distribution and re-normalizing.
The resulting distribution over object classes, along with
the geometric details of the object, are sent to the mapper
for integration into the model. To establish the effectiveness
of the RVM on bag-of-words technique, we performed an
experiment on the Caltech 101 dataset [4]. Five categories
were selected and objects of interest were extracted using the
annotations provided with the dataset. Half of the images
were used to train the RVM model using 3-fold cross-
validation for RVM radius parameter selection. The resulting
RVMs were used to classify images from the other half of
the images reserved for the test set. The confusion matrix
from this experiment can be seen in figure 8.

E. Gaussian place segmentation

We presented in [12] a straightforward technique to rep-
resent the extent of a ”room” by a Gaussian extracted from
the laser range data at a given pose. The assumption made
here is that the robot can mostly only see within one room
or location and that the laser will sufficiently cover the area
of the room. The use of this model allows us to perform a
simple Mahalanobis distance test to determine if the robot
is within one of our ”rooms”, or if a new room Gaussian
should be created. We keep track of the rooms which are
traversed by the robot to build up a topological representation
of room adjacency. When object recognitions or classification
distributions are observed by the robot, they are assigned to
the room Gaussian where the robot currently resides. Each
room Gaussian is given a distribution over room labels as a
result of the CRF algorithm described in section III-A.

F. Mapping

We have developed a library for mobile robot mapping
called OmniMapper. We have used it to develop virtual
measurements [25], learned object recognition mapping [19],
for multi-robot mapping [17], and to determine mapping per-
formance with sensory degradation [18]. Interested readers
should refer to these papers for more complete implementa-
tion details.

The mapper uses the GTSAM library to optimize a graph
of measurements between robot poses along a trajectory,
and between robot poses and various landmarks in the
environment. Measurements come from various software
components; in this case, measurements come from the
object recognition and classification modules described in
sections III-C and III-D. Measurements of simple objects
like points, lines, and planes are data associated to mapped
landmarks with the joint compatibility branch and bound
(JCBB) technique in [11]. Measurements of richer landmarks
such as objects or signs are data associated based upon
interpretation of this semantic information [19].

IV. EXPERIMENT

We performed a series of experiments on log data gathered
from the Aware Home test facility at Georgia Tech. The
topology of the Aware Home is typical of modern American
architecture. There is a kitchen with a small dining area
opens into the living room. The living room is connected
to a hallway which connects to an office, bathroom, two
bedrooms, and a closet. The Asus Xtion Pro 3D camera is
currently placed on the robot at a height that makes it difficult
to observe tables and objects if they are more than about 1
meter above the ground, so we made sure that there was a
counter, desk, or table at or below this height. In the future,
the 3D camera will be placed on the pan-tilt unit alongside
the high resolution camera to enable observations of surfaces
and objects at any height.

We tele-operated the robot in a set of trajectories in the
kitchen, living room, office and bathroom. In each room, the
robot was made to collect high resolution camera images of
the table surfaces and the objects thereupon.

When an image is captured by the high resolution camera,
the 3D camera captures a point cloud. The point cloud
is filtered to select a volume of interest in front of the
robot. Planes are extracted from the remaining points, and
objects are selected as clusters of points which lie above
horizontal planes. The object points are projected into the
high resolution image to find a region of interest for visual
feature analysis. Each region of interest becomes a candidate
object image.

Some examples of trained objects and the categories to
which they belong can be seen in figure 9. The current
set of object classes include food, toys, cooking, sundries
(medicine, soap, etc.), tools, and electronics. This taxonomy
was selected to assign objects to classes which should log-
ically correspond to room assignment. The rooms currently
available to the CRF model are kitchen, bathroom, living
room, office, hall, and bedroom.
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Fig. 9. Example images from recognition database. These objects should
be recognized by the SURF recognition module. Additional objects were
used to train the bag-of-words classifier module.

Fig. 10. Output posterior marginal distributions. Portion of topological
map is rendered into metric map display. Room nodes are shown as yellow
ellipsoids, except the current room is shown in green. Topological room
connectivity is shown with thick blue lines between room nodes. Posterior
room label distributions is shown below each room node (unlabeled nodes
are Hall nodes, and are omitted for clarity). The yellow entry is the most
likely marginal room label. Objects are shown as red spheres with thin blue
lines linking them to the poses from which they are observed. Recognized
objects have their labels displayed in pink. Objects which have not been
recognized and were instead categorized have their posterior marginal
distributions displayed above them.

V. RESULTS

The posterior marginal distributions over some of the
objects and rooms in a test run can be seen in figure 10.
The most likely decoding can be seen in figure 11.

In one test run, the first time the robot entered the office
it failed to recognize the Dremel tool or the Mac mini with
SURF feature matching. The Mac mini was not part of
the recognition database, and it was mistakenly categorized
as a Food. This resulted in the office posterior distribution
favoring the label ”living room”. When the robot re-entered
the office at a later point in the test run, the Dremel tool was
recognized directly and the office was relabeled correctly.

The Gaussian regions used for place segmentation per-
formed poorly due to the fact that the laser scanner could

Kitchen

Living 
Room

Hall

Office

Cooking

Cooking

Food

Toys

Tools

Electronics

Fig. 11. The most likely configuration of rooms and places from a test
run in the Aware Home (redrawn, some extraneous Hall nodes removed for
clarity).

only observe a 180 degree arc in front of the robot. When
the robot is driven in reverse, it quickly exits the current
Gaussian region and creates a new one. This new region
similarly favors the region in front of the robot and therefore
is also quickly exited. This problem can be addressed by
either making use of laser scanners covering the front and
back of the robot to provide a more complete view of the
room, or to come up with a new representation for place
segmentation.

VI. CONCLUSIONS

We have demonstrated a model which is used to jointly
classify objects and room labels on a mobile robot. This
model incorporates information from two types of object
measurements: recognition of previously seen and trained
objects, as well as classification of novel objects. This model
was tested on a mobile robot teleoperated in a real domestic
environment with objects. The current experiments focus on
determining that these recognition, mapping, and reasoning
components can be made to work together to accomplish
rudimentary understanding of the purpose and structure of a
domestic environment. The selection of objects used in the
experimental tests consisted of many of the same objects
which were explicitly used for training in the recognition
and classification components; however, we maintain that it
is reasonable and even desirable for a mobile robot to acquire
models of the objects with which it will be interacting
through human interaction in addition to self training.

VII. FUTURE WORKS

The future purpose of the CRF model is to enable au-
tonomous exploration and mapping, as well as service tasks.
The current implementation establishes that this reasoning
model is useful for leveraging context for classification of
objects and places. The posterior marginal distribution on
the CRF model can be used to direct exploration. The robot
can search for additional objects in rooms where the label
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entropy is large, or it can examine unknown objects in greater
detail. The robot can select certain unknown objects to pose
a small set of questions to a human operator by selecting
the objects which are most likely to provide a great deal
of information to the rest of the model when they become
disambiguated.

Other tasks which use the CRF model to understand
human commands should use the maximum likelihood de-
coding (which is not in general the same as the maximum
marginal likelihood) of the entire graph. In this way, the robot
can use the context of the entire model to perform tasks such
as ”get a cup from the kitchen”.

Currently, model parameters such as room adjacency and
room-object compatibility are assigned to what we thought
were reasonable values. In the future, we will train model
parameters from observations. We can look at a corpus
of architectural floor-plans to establish the room adjacency
model. We would like to train the room-object compatibility
model by collecting a survey of where people find classes of
objects within their own homes. This training information
should also be augmented by online adaptation to new
observations.

The current recognition database is limited in size due to
the amount of time needed to perform SURF feature match-
ing on high resolution images. We intend to use the bag-
of-words histogram comparison to filter out low probability
class matches as an initial step. We will expand object classes
and recognition database to cover the key components which
will be useful to robots in performing their tasks as well as
in understanding their environments.
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